An Efficient Component Map Generation Method for Prediction of Gas Turbine Performance

Author:

Tsoutsanis Elias1,Meskin Nader1,Benammar Mohieddine1,Khorasani Khashayar2

Affiliation:

1. Qatar University, Doha, Qatar

2. Concordia University, Montreal, QC, Canada

Abstract

Improving efficiency, reliability and availability of gas turbines have become more than ever one of the main areas of interest in gas turbine research. This is mainly due to the stringent environmental regulations that have to be met in such a mature technology sector; and consequently new research challenges have been identified. One of these involves the establishment of high fidelity, accurate, and computationally efficient engine performance simulation, diagnosis and prognosis technology. Performance prediction of gas turbines is strongly dependent on detailed understanding of the engine component behaviour. Compressors are of special interest because they can generate all sorts of operability problems like surge, stall and flutter; and their operating line is determined by the turbine characteristic. Compressor performance maps, which are obtained in costly rig tests and remain manufacturers proprietary information, impose a stringent limitation that has been commonly resolved by scaling default generic maps in order to match the targeted off-design or engine degraded measurements. This approach is efficient in small range of operating conditions but becomes less accurate for a wider range of operations. In this paper, a novel compressor map generation method, with the primary objective of improving the accuracy and fidelity of the engine model performance prediction is developed and presented. A new compressor map fitting and modelling method is introduced to simultaneously determine the best elliptical curves to a set of compressor map data. The coefficients that determine the shape of compressor maps’ curves have been analyzed and tuned through a multi-objective optimization algorithm in order to meet the targeted set of measurements. The proposed component map generation method is developed in the object oriented Matlab/Simulink environment and is integrated in a dynamic gas turbine engine model. The accuracy of this method is evaluated for off-design steady state and transient engine conditions. The proposed compressor map generation method has the capability to refine current gas turbine performance prediction approaches and to improve model-based diagnostic techniques.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3