Axial Inclination of the Bristle Pack, a New Design Parameter of Brush Seals for Improved Operational Behavior in Steam Turbines

Author:

Schwarz H.1,Friedrichs J.1,Flegler J.2

Affiliation:

1. TU Braunschweig, Braunschweig, Germany

2. Siemens AG, Mülheim, Germany

Abstract

Within this paper, the axial inclination of the bristle pack as a new design parameter for brush seals for use in a steam turbine and other rotating equipment is discussed. It is widely known that the behavior of brush seals can be influenced by important main design parameters of the bristle pack such as, but not limited to, the bristle thickness, the lay angle or the bristle length. Furthermore, the variation of the front and back plate results in different seal characteristics [1]. Each one of these parameters also has an influence on bristle damping, the blow down capability and thus the leakage flow. In addition, under changing and transient operating conditions, the radial adaptivity, which is essential for accommodating shaft deflection, is also a very important property. For a comprehensive seal design, the wear characteristic and deterioration effects have to be considered beside the above mentioned properties. At the Technical University of Braunschweig, brush seals are experimentally investigated with above focus on different test rigs. These rigs allow a detailed sealing performance investigation including live bristle pack observations and blow down measurement using cold air as well as brush seal investigations using live steam conditions up to 50bars and 450°C and a rotating shaft with representative rotational velocity. The paper shows and discusses experimental results of different axial inclinations of the bristle pack, while testing with constant front and back plate designs. The influences on the blow down, the axial behavior of the bristle pack, the leakage flow and the bristle pack stiffness are shown. The new effect of a rotating blow down type of bristle oscillation is also shown and discussed and finally a classification of the seal behavior depending of the different axial inclination is given.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3