A Three-Dimensional Tube Bundle Model Analysis for Leakage Flow Characteristics of Variable Bristle Diameter Brush Seals With Bristle Pack Stratification

Author:

Ma Dengqian1,Li Zhigang1,Li Jun1

Affiliation:

1. Institute of Turbomachinery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

Abstract The leakage flow characteristics of the variable bristle diameter (VBD) brush seals are numerically investigated using the three-dimensional (3D) tube bundle model with consideration of bristle pack stratification. The discretization of the computational domain applies the multiblock structured mesh, which ensures that there is no need to set interfaces between the fluid domains of the bristle pack and the cavities to eliminate interpolation errors. The bristle pack stratification is achieved by using mesh motion technique from the point of cause-effect. The effects of pressure ratio (Rp=1.5, 2.5, 3.5), axial rows of bristles (Nx=9–21), sealing clearance (c=0, 0.1 mm), bristle pack arrangements, and bristles gapping (gi=0, 0.005, 0.010, 0.015 mm) on the leakage flow characteristics and aerodynamic forces are conducted. The recorded leakage flow of the 3D tube bundle model is multiplied by circumferential loop number (Ncl) to determine total leakage flow rate of the brush seal. The numerical results agreed well with the experimental data, which verifies the reliability of the numerical method. The numerical results indicate that the leakage flow rate increases linearly with the pressure ratio. The increase of Nx has a distinctly different effect on the relative rate of leakage flow for the contacting and clearance brush seals. The use of large diameter bristles weakens the sealing performance of the brush seals, particularly in the rear region. Bristle pack stratification can improve the sealing performance of the brush seals. The large diameter bristles increase the porosity and reduce the flow resistance coefficients. On the contrary, the bristle pack stratification decreases the porosity and rises the flow resistance coefficients in the rear region. The results of this article indicate when designing VBD brush seals, the effects of bristle diameter and bristle density on the sealing performance and pressure loading capacity of the brush seals should be fully considered.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference34 articles.

1. Advanced Seal Technology Role in Meeting Next Generation Turbine Engine Goals,1998

2. Sealing in Turbomachinery;J. Propul. Power,2006

3. Fundamental Design Issues of Brush Seals for Industrial Applications;ASME J. Turbomach.,2002

4. Non-Metallic Brush Seals for Gas Turbine Bearings,2004

5. Effect of Sliding Speed and Counterface Properties on the Tribo-Oxidation of Brush Seal Material Under Dry Sliding Conditions;Tribol. Int.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inter-Stage Pressure Drop of Multi-Stage Brush Seal With Differentiated Structure;Journal of Engineering for Gas Turbines and Power;2023-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3