Model-Based Analysis of the Stiffness of the Wrist Joint in Active and Passive Conditions

Author:

Zonnino Andrea1,Sergi Fabrizio1

Affiliation:

1. Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE 19713 e-mail:

Abstract

The control of joint stiffness is a fundamental mechanism used to control human movements. While many studies have observed how stiffness is modulated for tasks involving shoulder and elbow motion, a limited amount of knowledge is available for wrist movements, though the wrist plays a crucial role in manipulation. We have developed a computational framework based on a realistic musculoskeletal model, which allows one to calculate the passive and active components of the wrist joint stiffness. We first used the framework to validate the musculoskeletal model against experimental measurements of the wrist joint stiffness, and then to study the contribution of different muscle groups to the passive joint stiffness. We finally used the framework to study the effect of muscle cocontraction on the active joint stiffness. The results show that thumb and finger muscles play a crucial role in determining the passive wrist joint stiffness: in the neutral posture, the direction of maximum stiffness aligns with the experimental measurements, and the magnitude increases by 113% when they are included. Moreover, the analysis of the controllability of joint stiffness showed that muscle cocontraction positively correlates with the stiffness magnitude and negatively correlates with the variability of the stiffness orientation (p < 0.01 in both cases). Finally, an exhaustive search showed that with appropriate selection of a muscle activation strategy, the joint stiffness orientation can be arbitrarily modulated. This observation suggests the absence of biomechanical constraints on the controllability of the orientation of the wrist joint stiffness.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3