Flow Dynamics and Mixing of a Transverse Jet in Crossflow—Part I: Steady Crossflow

Author:

Zhang Liwei1,Yang Vigor2

Affiliation:

1. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:

2. William R. T. Oakes Professor and Chair School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:

Abstract

A large-eddy-simulation-based numerical investigation of a turbulent gaseous jet in crossflow (JICF) is presented. The present work focuses on cases with a steady crossflow and two different jet-to-crossflow velocity ratios, 2 and 4, at the same jet centerline velocity of 160 m/s. Emphasis is placed on the detailed flow evolution and scalar mixing in a compressible, turbulent environment. Various flow characteristics, including jet trajectories, jet-center streamlines, vortical structures, and intrinsic instabilities, as well as their relationships with the mixing process, are examined. Mixing efficiency is quantified by the decay rate of scalar concentration, the probability density function (PDF), and the spatial and temporal mixing deficiencies. Depending on the jet-to-crossflow velocity ratios, the wake vortices downstream of the injector orifice can either separate from or connect to the main jet plume, and this has a strong impact on mixing efficiency and vortex system development. Statistical analysis is applied to explore the underlying physics, with special attention at the jet-center and transverse planes.

Funder

U.S. Department of Energy

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference54 articles.

1. Fifty Years of Jet in Cross Flow Research,1983

2. Transverse Jets and Their Control;Prog. Energy Combust. Sci.,2010

3. The Interaction of Jets With Crossflow;Annu. Rev. Fluid Mech.,2012

4. The Jet in Crossflow;Phys. Fluids,2014

5. Vortical Structure in the Wake of a Transverse Jet;J. Fluid Mech.,1994

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3