Abstract
The dilution zone in modern aero-engine combustors is characterized by a strong swirling mainstream with weak transverse jets. This characteristic brings new challenges in homogenizing the temperature distribution at the combustor exit. Therefore, it is imperative to understand the temperature penetration and mixing process of the jet in swirling crossflow (JISCF). This investigation provides new insight in the temperature mixing process for a JISCF in nozzle exit diameter (D) at 7.4, 10.7, and 14 mm and jet to mainstream velocity ratio (VR) from 2.0 to 6.6. The temperature mixing process was measured in a specially designed optical assessable three-dome model gas turbine combustor by planar 1-methylnaphthalene (1-MN) tracer laser-induced fluorescence thermometry. A detailed quantitative measurement of temperature distribution is achieved through the spectral red shift in the fluorescence of 1-MN as the temperature increase. This diagnostic was employed to provide the first two-dimensional temperature distribution for the JISCF. The results showed that the swirling crossflows induce strong spanwise thermal advection, forming secondary low-temperature regions downstream. Generally, the flow structure and mixing process are governed by the interaction of jet and swirling flow. The jet flow parameters, including velocity ratio and diameter, changed the flow structures by changing the interaction between jet and swirling flow. Statistical results and proper orthogonal decomposition (POD) analyses showed a strong anisotropic mixing process in the downstream of the jet.
Funder
National Science and Technology Major Project
National Natural Science Foundation of China