Impacts of Discretization Error, Flow Modeling Error, and Measurement Noise on Inverse Transport-Diffusion-Reaction in a T-Junction

Author:

Waeytens Julien1,Chatellier Patrice1,Bourquin Frédéric1

Affiliation:

1. Université Paris-Est, IFSTTAR, 14-20 Boulevard Newton, Marne-la-Vallée F-77447, France e-mail:

Abstract

By combining a physical model and sensor outputs in an inverse transport-diffusion-reaction strategy, an accurate concentration cartography may be obtained. The paper addresses the influence of discretization errors, flow uncertainties, and measurement noise on the concentration field reconstruction process. We consider a key element of a drinking water network, i.e., a pipe junction, where Reynolds and Peclet numbers are approximately 2000 and 1000, respectively. We show that a 10% error between the reference concentration field and the reconstructed concentration field may be obtained using a coarse discretization. Nevertheless, to keep the error below 10%, a fine concentration discretization is required. We also detail the influence of the flow approximation on the concentration reconstruction process. The flow modeling error obtained when the exact Navier–Stokes flow is approximated by a Stokes flow may lead to a 40% error in the reconstructed concentration. However, if the flow field is obtained from the full set of Navier–Stokes equations, we show that the error may be less than 5%. Then, we observe that the quality of the reconstructed concentration field obtained with the proposed inverse technique is not deteriorated when sensor outputs have a normal distribution noise variance of few percents. Finally, a good engineering practice would be to stop the reconstruction process according to an extended discrepancy principle including modeling and measurement errors. As shown in the paper, the quality of the reconstructed field declines after reaching the threshold of the modeling error.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3