Inverse Computational Fluid Dynamics: Influence of Discretization and Model Errors on Flows in Water Network Including Junctions

Author:

Waeytens Julien1,Chatellier Patrice2,Bourquin Frédéric3

Affiliation:

1. Université Paris-Est, IFSTTAR,Laboratory on Instrumentation,Simulation and Scientific Informatics,14-20 Boulevard Newton,Marne-la-Vallée F-77447, Francee-mail: julien.waeytens@ifsttar.fr

2. Université Paris-Est, IFSTTAR,Laboratory on Instrumentation,Simulation and Scientific Informatics,14-20 Boulevard Newton,Marne-la-Vallée F-77447, Francee-mail: patrice.chatellier@ifsttar.fr

3. Université Paris-Est, IFSTTAR,Components and Systems Department,14-20 Boulevard Newton,Marne-la-Vallée F-77447, Francee-mail: frederic.bourquin@ifsttar.fr

Abstract

Abstract We address the reconstruction of relevant two-dimensional (2D) flows in drinking water networks, especially in key elements such as pipe junctions, in view of representative water quality simulations. From the optimal control theory, a specific inverse technique using few sensors and computational fluid dynamics (CFD) models has been developed. First, we determine the boundary velocities, i.e., the control parameters, by minimizing a data misfit functional. Then, knowing the boundary velocities, a direct solve of the flow model is performed to get the space–time cartography of the water flow. To reduce the number of control parameters to be determined and thus restrict the number of sensors, the spatial shape of the boundary velocities is considered as an a priori information given by the water pipes engineering literature. Thus, only the time evolution of the boundary velocities has to be determined. The whole numerical procedure proposed in this paper easily fits in a general purpose finite element software, featuring user's friendliness for a wide engineering audience. Two ways are investigated to reduce the computation time associated to the flow reconstruction. The adjoint framework is used in the minimization process. The reconstruction of the flow using coarse discretizations and simple flow models, instead of 2D Navier–Stokes equations, is studied. The influence of the flow modeling and of the dicretization on the quality of the reconstructed velocity is studied on two examples: a water pipe junction and a 200 m subsection from a French water network. In the water pipe junction, we show that at a Reynolds number of 200 a hybrid approach combining an unsteady Stokes reconstruction and a single direct Navier–Stokes simulation outperforms the algorithms based on a single model. In the network subsection, we obtain an L2 error less than 1% between the reference velocity based on Navier–Stokes equations (Reynolds number of 200) and the velocity reconstructed from Stokes equation. In this case, the reconstruction lasts less than 1 min. Stokes based reconstruction of a Navier–Stokes flow in junctions at Reynolds number up to 100 yields the same accuracy and proves fast.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3