Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip

Author:

Mhetras Shantanu1,Narzary Diganta1,Gao Zhihong1,Han Je-Chin1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

Film-cooling effectiveness from shaped holes on the near tip pressure side and cylindrical holes on the squealer cavity floor is investigated. The pressure side squealer rim wall is cut near the trailing edge to allow the accumulated coolant in the cavity to escape and cool the tip trailing edge. Effects of varying blowing ratios and squealer cavity depth are also examined on film-cooling effectiveness. The film-cooling effectiveness distributions are measured on the blade tip, near tip pressure side and the inner pressure side and suction side rim walls using pressure sensitive paint technique. The internal coolant-supply passages of the squealer tipped blade are modeled similar to those in the GE-E3 rotor blade with two separate serpentine loops supplying coolant to the film-cooling holes. Two rows of cylindrical film-cooling holes are arranged offset to the suction side profile and along the camber line on the tip. Another row of shaped film-cooling holes is arranged along the pressure side just below the tip. The average blowing ratio of the cooling gas is controlled to be 0.5, 1.0, 1.5, and 2.0. A five-bladed linear cascade in a blow down facility with a tip gap clearance of 1.5% is used to perform the experiments. The free-stream Reynolds number, based on the axial chord length and the exit velocity, was 1,480,000 and the inlet and exit Mach numbers were 0.23 and 0.65, respectively. A blowing ratio of 1.0 is found to give best results on the pressure side, whereas the tip surfaces forming the squealer cavity give best results for M=2. Results show high film-cooling effectiveness magnitudes near the trailing edge of the blade tip due to coolant accumulation from upstream holes in the tip cavity. A squealer depth with a recess of 2.1mm causes the average effectiveness magnitudes to decrease slightly as compared to a squealer depth of 4.2mm.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3