Multiobjective Optimization of a Pin-Fin Heat Sink Using Evolutionary Algorithms

Author:

Kanyakam Siwadol1,Bureerat Sujin1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002 Thailand

Abstract

This paper presents the use of multiobjective evolutionary algorithms for the optimal geometrical design of a pin-fin heat sink. The multiobjective design problem is posed to minimize two conflicting objectives: the junction temperature and the fan pumping power of the heat sink. The design variables are mixed integer/continuous. The encoding/decoding process for this mixed integer/continuous design variables is detailed. The multiobjective optimizers employed to solve the design problem are population-based incremental learning, strength Pareto evolutionary algorithm, particles swarm optimization, and archived multiobjective simulated annealing. The approximate Pareto fronts obtained from using the various optimizers are compared based upon the hypervolume and generational distance indicators. From the results, population-based incremental learning (PBIL) outperforms the others. The new design approach is said to be superior to a classical design approach. It is also illustrated that the proposed multiobjective design process leads to better design compared to the current commercial pin-fin heat sinks.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3