A global sensitivity analysis-assisted sequential optimization tool for plant-fin heat sink design

Author:

Li Enying,Zhou Zheng,Wang Hu,Cai Kang

Abstract

Purpose This study aims to suggest and develops a global sensitivity analysis-assisted multi-level sequential optimization method for the heat transfer problem. Design/methodology/approach Compared with other surrogate-assisted optimization methods, the distinctive characteristic of the suggested method is to decompose the original problem into several layers according to the global sensitivity index. The optimization starts with the several most important design variables by the support vector regression-based efficient global optimization method. Then, when the optimization process progresses, the filtered design variables should be involved in optimization one by one or the setting value. Therefore, in each layer, the design space should be reduced according to the previous optimization result. To improve the accuracy of the global sensitivity index, a novel global sensitivity analysis method based on the variance-based method incorporating a random sampling high-dimensional model representation is introduced. Findings The advantage of this method lies in its capability to solve complicated problems with a limited number of sample points. Moreover, to enhance the reliability of optimum, the support vector regression-based global efficient optimization is used to optimize in each layer. Practical implications The developed optimization tool is built by MATLAB and can be integrated by commercial software, such as ABAQUS and COMSOL. Lastly, this tool is integrated with COMSOL and applied to the plant-fin heat sink design. Compared with the initial temperature, the temperature after design is over 49°. Moreover, the relationships among all design variables are also disclosed clearly. Originality/value The D-MORPH-HDMR is integrated to obtain the coupling relativities among the design variables efficiently. The suggested method can be decomposed into multiplier layers according to the GSI. The SVR-EGO is used to optimize the sub-problem because of its robustness of modeling.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3