Experimental Investigation of a Combined Photovoltaic Thermal System via Air Cooling for Summer Weather of Egypt

Author:

Maghrabie Hussein M.1,Mohamed A. S. A.2,Salem Ahmed M.3

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Al Shoban Al Moslemin St., Qena 83521, Egypt

2. Department of Mechanical, Faculty of Industrial Education, High Institute for Engineering and Technology, Sohag University, Sohag 82524, Egypt

3. Department of Mechanical, Faculty of Industrial Education, Sohag University, Sohag 82524, Egypt

Abstract

Abstract Utilizing photovoltaic (PV) panels for generating electrical power is accompanied with a low electrical efficiency that is further reduced as its surface temperature surpasses an acceptable limit. In order to overcome this critical issue, it is necessary to maintain the PV panels relatively at low surface temperatures as possible as using appropriate cooling systems. The current implementation assesses experimentally the performance of a combined PV thermal (PV/T) system using a forced-air cooling system during April, May, June, and July of summer weather of Egypt. The results reveal that the highest values of the solar intensity and the ambient air temperature are obtained in July. Employing the forced-air cooling system reduces the average temperature on the front and back sides of the PV panel during July by 12% and 12.8%, respectively. In addition, the forced-air cooling system enhances noticeably the electrical power output of the PV panel by 3.3%, 4.3%, 4.5%, and 6.1% during April, May, June, and July, respectively. Moreover, the maximum value of the average thermal efficiency achieved during July is 37%; whereas, the corresponding value of the average overall efficiency fulfilled during April is 48.7%.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3