Heat Pipe-Based Cooling Enhancement for Photovoltaic Modules: Experimental and Numerical Investigation

Author:

Ma Shuailing12ORCID,Jin Yingai12,Alam Firoz3ORCID

Affiliation:

1. National Key Laboratory of Automotive Chassis Integration and Bionics, Changchun 130022, China

2. College of Automotive Engineering, Jilin University, Changchun 130022, China

3. School of Engineering (Aerospace, Mechanical and Manufacturing), Royal Melbourne Institute of Technology University, Melbourne, VIC 3000, Australia

Abstract

High temperatures in photovoltaic (PV) modules lead to the degradation of electrical efficiency. To address the challenge of reducing the temperature of photovoltaic modules and enhancing their electrical power output efficiency, a simple but efficient photovoltaic cooling system based on heat pipes (PV-HP) is introduced in this study. Through experimental and numerical investigations, this study delves into the temperature characteristics and power output performance of the PV-HP system. Orthogonal tests are conducted to discern the influence of different factors on the PV-HP system. The experimental findings indicate that the performance of the PV-HP system is superior to that of the single system without heat pipes. The numerical simulation shows the effects of system structural parameters (number of heat pipes, angle of heat pipe condensation section) on system temperature and power output performance. The numerical simulation results show that increasing the angle of the heat pipe condensation section and the number of heat pipes leads to a significant drop in system temperature and an increase in the efficiency of the photovoltaic cells.

Funder

Changsha Automobile Innovation Research Institute Innovation Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3