Affiliation:
1. NASA Glenn Research Center, Cleveland, OH
Abstract
Experiments that demonstrate the use of endwall recirculation to control the stall of transonic compressor stages are described. Endwall recirculation of a compressor stage is implemented by bleeding air from the casing downstream of a stator blade row and injecting the air as a wall jet upstream of a preceding rotor blade row. The bleed ports, injection ports, and recirculation channels are circumferentially discrete, and occupy only 20–30% of the circumference. The development of compact wall-jet injectors is described first. Next, the results of proof-of-concept steady recirculation tests on a single-stage transonic compressor are presented. Finally, the potential for using endwall recirculation to increase the stability of transonic highly-loaded multistage compressors is demonstrated through results from a rig test of simulated recirculation driving both a steady injected flow and an unsteady injected flow commanded by closed-loop active control during compressor operation at 78–100% of design speed. In this test air from an external source was injected upstream of several rotor blade rows while compressor bleed was increased by an amount equivalent to the injected massflow. During closed loop control, wall static pressure fluctuations were monitored and the injected flow rate was controlled to reduce the stalling mass flow. The use of wall jet injection to study the dynamics of transonic compressor stages is also discussed.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献