Investigation of Vaned-Recessed Casing Treatment in a Low-Speed Axial Flow Compressor, Part I: Time-Averaged Results

Author:

Akhlaghi Mohammad1,Azizi Yahya1

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran

Abstract

This paper investigates the effects of two modifications to a vaned recessed casing treatment. First, the shape of a circular curve was used in the top of the treated casing. Second, a fully curved guide vane was also applied. The goals of the modifications are to enhance the flow recirculation as well as to relieve the low-speed flow, which is normally accumulated within the corners of the vaned recessed casing treatment. The solid casing in addition to the two vaned recessed configurations with 23.2% and 53.5% rotor blade tip axial chord exposure have been studied numerically. The results indicated that two mechanisms are involved in the stall margin enhancement. First, the circumferential pressure gradient is reduced for both configurations. The reduction in pressure gradient largely reduces the development of tip leakage vortex and, thus, the generation of low-speed fluid is diminished. Second, the main flow/tip leakage interface moves toward downstream and the movement of interface toward the leading edge is delayed. The second configuration with a greater rotor blade tip exposure enables extra flow recirculation due to decreasing surface area and, therefore, could be superior to the application of the first casing treatment configuration. The major streamlines within the casing treatment are also discussed. The time-averaged results are presented in this paper, while the unsteady results including instantaneous flow fields, origins of the unsteadiness and frequency analysis are discussed in part II.

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3