Extrusion Through Spherical Dies—An Upper Bound Analysis

Author:

Gordon W. A.1,Van Tyne C. J.2,Sriram S.3

Affiliation:

1. Automotive Division, IR/Torrington, 59 Field Street, Torrington, CT 06790

2. Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, CO 80401

3. Research and Development, Ispat Inland Inc., 3001 East Columbus Drive, East Chicago, IN 46312

Abstract

An upper bound solution for extrusion through a spherical die has been developed. Equations for the velocity and strain rate fields in the deformation zone are presented. The equations to determine the internal power of deformation, shear power losses along the two surfaces of velocity discontinuity and friction power losses along the die workpiece interface are shown. In order to maintain generality, these power terms have been calculated via numerical integration methods. The shear power losses and the friction power losses for the extrusion through a spherical die are of similar magnitude as for the extrusion through an “equivalent” conical die. The internal power of deformation is greater for the spherical die as compared to the conical die especially at large radius of curvatures for the spherical die. From the model the optimal die curvature can be determined which minimizes the pressure required to extrude through a spherical die. The analysis presented herein can be generalized to any axisymmetric die shape, which produces a cylindrical product from a cylindrical billet. This extension can be accomplished with minimal changes in the model.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3