Die Design Architecture for Enhancing Tool Life Via Manipulation of the Elastic Strain Field of the Dies During Extrusion Processes

Author:

Ngaile Gracious1,Rodrigues Daniel Santiago1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695

Abstract

Abstract Forging and extrusion tools are often subjected to a combination of cyclic thermo-mechanical, chemical, and tribological loads. Strategies for minimizing these loads are critical for preventing premature tool failure and increasing productivity. A die design architecture for extrusion that minimizes the residual contact pressure at the die-workpiece interface during the ejection stroke is proposed. The underlying principle of this die design is that during the extrusion stroke, a tapered die can move in the direction of the extrusion load, thus inducing negative radial elastic strain on the die. When the extrusion load is removed, the elastic strain energy stored in the die is released, thus repositioning the die to its initial state. With this design architecture, the workpiece can be ejected at no load. The process was validated using finite element (FE) warm forging/extrusion simulations for a constant velocity (CV) joint and pinion gear shaft. These simulations showed that in addition to reducing residual contact pressure, which enhances tribological conditions, the new die design can easily lower die stresses, thus increasing die fatigue life. The FE simulations for CV joint and pinion gear shaft demonstrated residual pressure in certain locations of the die ranging from 30% to 100% of the pressure induced during the extrusion stroke. The case studies simulated showed that a total energy saving of up to 15% can be achieved with the proposed die setup.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3