Three-Dimensional Simulation Analysis of the Effect of Hydrous Ethanol and Exhaust Gas Recirculation on Gasoline Direct Injection Engine Combustion and Emissions

Author:

Shi Xiuyong1,Jiang Yixiao1,Wang Qiwei1,Qian Weiwei1,Huang Rong1,Ni Jimin1

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

Abstract

Abstract To analyze the influence of hydrous ethanol on the performance of the direct-injection engine, the three-dimensional simulation is carried out by using converge software coupled with the combustion mechanism of hydrous ethanol gasoline and the soot model. The combustion and soot generation characteristics of a direct-injection gasoline engine burning hydrous ethanol gasoline using exhaust gas recirculation (EGR) technology are investigated. It is found that the increase of the blending ratio of the hydrous ethanol can accelerate the flame propagation speed, shorten the combustion duration, and improve the combustion isovolumetric. The nucleation and growth of soot are jointly controlled by polycyclic aromatic hydrocarbons (PAHs) and the small molecular components such as C2H2. The oxygen content properties and high reactive OH of the hydrous ethanol-containing gasoline inhibit soot formation. Compared with pure gasoline, the carbon soot precursor mass is reduced by 60%, 54.5%, 73.3%, and 52.4% for 20% anhydrous ethanol blended with gasoline, A1, A2, A3, and A4, respectively, and the carbon soot mass is reduced by 63.6% and the carbon soot volume density is reduced by 40%. The introduction of EGR exhaust reduces the burning rate and leads to an increase in the production of carbon monoxide, hydrocarbon, and soot. However, the combination of EGR with hydrous ethanol gasoline can significantly improve the engine combustion environment and significantly reduce soot and PAHs concentrations. The impact of EGR also includes the ability to reduce combustion chamber temperatures and reduce NOx emissions from hydrous ethanol gasoline by 75%.

Funder

National Natural Science Found of China

Natural Science Foundation of Shanghai

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3