Thermochromic Liquid Crystal Thermography: Illumination Spectral Effects. Part 2: Theory

Author:

Anderson M. R.1,Baughn J. W.23

Affiliation:

1. Calpine Corporation, 104 Woodmere Road, Folsom, CA 95630

2. Fellow ASME

3. Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616

Abstract

A theoretical model of a Thermochromic Liquid Crystal (TLC) imaging system was developed to aid in understanding the results of experiments on spectral effects and to investigate the various factors affecting the hue-temperature calibration of TLC’s. The factors in the model include the spectral distribution of the illumination source and UV filter, surface reflection of both the TLC and background, and the sensing device (camera) spectral characteristics and gain settings. It was found that typical hue-temperature calibration curves could not be entirely explained by a TLC reflectivity model with either a monochromatic spike or a narrow bandwidth reflectivity, which is often assumed. Experimental results could be explained, however, by a model that reflects over a relatively large band of wavelengths. The spectral characteristics of the five illumination sources (those for which experiments were performed) were considered. Background reflection, which commonly accounts for 30%–50% of the reflected light, was found to significantly attenuate the hue-temperature calibration curves toward the background hue value. The effect of the illumination source on the hue-temperature calibration curves is demonstrated and several experimentally observed phenomena are explained by the results of the theoretical calculations, specifically the spectral reflective properties of the liquid crystals and the transmissivity of the R, G, and B filters in the image capture camera.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3