Buoyancy Convection During the Growth of SixGe1−x by the Traveling Solvent Method (TSM)

Author:

Saghir M. Z.1,Makriyannis T. J.1,Labrie D.2

Affiliation:

1. Ryerson University, Department of Mechanical, Aerospace and Industrial Engineering, 350 Victoria St, Toronto, ON, M5B 2K3

2. Dalhousie University, Department of Physics and Atmospheric Science, Halifax, NS B3H 3J5

Abstract

The traveling solvent method known as TSM is a process used to produce pure and homogeneous crystals structures. TSM has been tested on many alloys producing uniform and uncontaminated single crystals. In the present study the effect of buoyancy convection on the growth of the Si0.02Ge0.98 crystal grown by the traveling solvent method is investigated under different heating conditions. The full Navier-Stokes equations together with the energy and solutal equations are solved numerically using the finite element technique. The model takes into consideration the losses of heat by radiation and the use of the phase diagram to determine the silicon concentration at the growth interface. Results reveal a strong convection in the solvent, which in turn is detrimental to the growth uniformity in the crystal rod. Additional numerical results show that the convective heat transfer significantly influences the solute distribution in the liquid zone and affects the growth rate substantially. Qualitative comparison of the numerical results with the experiment conducted at Dalhousie University showed a good agreement for the silicon concentration at the growth interface.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An alternative theoretical approach for the derivation of analytic and numerical solutions to thermal Marangoni flows;International Journal of Heat and Mass Transfer;2017-11

2. Heat transfer—A review of 2004 literature;International Journal of Heat and Mass Transfer;2010-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3