High Resolution Heat Transfer Measurement on Flat and Contoured Endwalls in a Linear Cascade

Author:

Laveau Benoit1,Abhari Reza S.2,Crawford Michael E.3,Lutum Ewald4

Affiliation:

1. e-mail:

2. Laboratory for Energy Conversion, ETH Zurich, Sonnegstrasse 3, CH-8092 Zurich, Switzerland

3. Siemens Energy, Inc., 4400 Alafaya Trail, Orlando, FL 32826

4. MTU Aero Engines, Dachauer Str. 665, 80995 Munich, Germany

Abstract

In order to continue increasing the efficiency of gas turbines, a significant effort is being made to reduce losses induced by secondary flows in turbine stages. In addition to their impact on aerodynamic losses, these vortical structures are also the source of large heat transfer variations across the passage. A substantial reduction of the secondary flow losses can be achieved with a contoured endwall. However, a change in the vortical pattern can dramatically impact the thermal loads on the endwalls and lead to higher cooling requirements in those areas. This paper focuses on heat transfer measurements made in a passage with either flat or contoured endwalls. The experimental data are supplemented with numerical predictions of the heat transfer data. The measurements are carried out on an isothermal endwall equipped with symmetric airfoils. The paper presents measurements at M = 0.3, corresponding to a Reynolds number ReCax=4.6×105. An infrared camera is used to provide high-resolution surface temperature data on the endwall. The surface is equipped with an insulating layer (Kapton), allowing the calculation of heat flux through the endwall. The heat transfer quantities, namely the heat transfer coefficient and the adiabatic wall temperature, are then derived from a set of measurements at different isothermal plate temperatures. The numerical predictions clarify the link between the change in the heat transfer quantities and the changes in the flow field due to endwall contouring. Finally, numerically predicted heat transfer data are deduced from a set of adiabatic and diabatic simulations that are compared to the experimental data. The comparison focuses on the differences in the regions with endwall contouring, where a significant difference in the heat transfer coefficient between flat and contoured endwalls is measured but underpredicted numerically.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3