Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions

Author:

Li Zhigang1,Liu Luxuan1,Li Jun2,Sibold Ridge A.3,Ng Wing F.3,Xu Hongzhou4,Fox Michael4

Affiliation:

1. Institute of Turbomachinery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

2. Institute of Turbomachinery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China e-mail:

3. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

4. Solar Turbines, Inc., San Diego, CA 92186

Abstract

This paper presents a detailed experimental and numerical study on the effects of upstream step geometry on the endwall secondary flow and heat transfer in a transonic linear turbine vane passage with axisymmetric converging endwalls. The upstream step geometry represents the misalignment between the combustor exit and the nozzle guide vane endwall. The experimental measurements were performed in a blowdown wind tunnel with an exit Mach number of 0.85 and an exit Re of 1.5×106. A high freestream turbulence level of 16% was set at the inlet, which represents the typical turbulence conditions in a gas turbine engine. Two upstream step geometries were tested for the same vane profile: a baseline configuration with a gap located 0.88Cx (43.8 mm) upstream of the vane leading edge (upstream step height = 0 mm) and a misaligned configuration with a backward-facing step located just before the gap at 0.88Cx (43.8 mm) upstream of the vane leading edge (step height = 4.45% span). The endwall temperature history was measured using transient infrared thermography, from which the endwall thermal load distribution, namely, Nusselt number, was derived. This paper also presents a comparison with computational fluid dynamics (CFD) predictions performed by solving the steady-state Reynolds-averaged Navier–Stokes with Reynolds stress model using the commercial CFD solver ansysfluent v.15. The CFD simulations were conducted at a range of different upstream step geometries: three forward-facing (upstream step geometries with step heights from −5.25% to 0% span), and five backward-facing, upstream step geometries (step heights from 0% to 6.56% span). These CFD results were used to highlight the link between heat transfer patterns and the secondary flow structures and explain the effects of upstream step geometry. Experimental and numerical results indicate that the backward-facing upstream step geometry will significantly enlarge the high thermal load region and result in an obvious increase (up to 140%) in the heat transfer coefficient (HTC) level, especially for arched regions around the vane leading edge. However, the forward-facing upstream geometry will modestly shrink the high thermal load region and reduce the HTC (by ∼10% to 40% decrease), especially for the suction side regions near the vane leading edge. The aerodynamic loss appears to have a slight increase (0.3–1.3%) because of the forward-facing upstream step geometry but is slightly reduced (by 0.1–0.3%) by the presence of the backward upstream step geometry.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Reference32 articles.

1. Turbine Cooling and Heat Transfer,1996

2. Fundamental Gas Turbine Heat Transfer;ASME J. Therm. Sci. Eng.,2013

3. High Resolution Heat Transfer Measurements on the Stator Endwall of an Axial Turbine;ASME J. Turbomach.,2015

4. A Visualization Study of Secondary Flows in Cascades,1954

5. Crossflows in a Turbine Cascade Passage;ASME J. Eng. Power,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3