Deformation of Pyramidal PDMS Stamps During Microcontact Printing

Author:

Jin Congrui1,Qiao Qichao2

Affiliation:

1. Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902 e-mail:

2. Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902

Abstract

Microcontact printing (MicroCP) is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact. Pyramidal PDMS stamps have received a lot of attention in the research community in recent years, due to the fact that the use of the pyramidal architecture has multiple advantages over traditional rectangular and cylindrical PDMS stamps. To better understand the dynamic MicroCP process involving pyramidal PDMS stamps, in this paper, numerical studies on frictionless adhesive contact between pyramidal PDMS stamps and transversely isotropic materials are presented. We use a numerical simulation method in which the adhesive interactions are represented by an interaction potential and the surface deformations are coupled by using half-space Green's functions discretized on the surface. It shows that for pyramidal PDMS stamps, the contact area increases significantly with increasing applied load, and thus, this technique is expected to provide a simple, efficient, and low-cost method to create variable two-dimensional arrays of dot chemical patterns for nanotechnology and biotechnology applications. The DMT-type and Johnson–Kendall–Roberts (JKR)-type-to-DMT-type transition regimes have been explored by conducting the simulations using smaller values of Tabor parameters.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3