Self-Folding of Thick Polymer Sheets Using Gradients of Heat

Author:

Davis Duncan1,Chen Bin1,Dickey Michael D.2,Genzer Jan2

Affiliation:

1. Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC 27695-7905

2. Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC 27695-7905 e-mail:

Abstract

Self-folding converts two-dimensional (2D) sheets into three-dimensional (3D) objects in a hands-free manner. This paper demonstrates a simple approach to self-fold commercially available, millimeter-thick thermoplastic polymer sheets. The process begins by first stretching poly(methyl methacrylate) (PMMA), polystyrene (PS), or polycarbonate (PC) sheets using an extensometer at elevated temperatures close to the glass transition temperature (Tg) of each sheet. Localizing the strain to a small strip creates a “hinge,” which folds in response to asymmetric heating of the sheet. Although there are a number of ways to supply heat, here a heat gun delivers heat to one side of the hinge to create the necessary temperature gradient through the polymer sheet. When the local temperature exceeds the Tg of the polymer, the strain in the hinged region relaxes. Because strain relaxation occurs gradually across the sheet thickness, the polymer sheet folds in the direction toward the heating source. A simple geometric model predicts the dihedral angle of the sheet based on the thickness of the sheet and width of the hinge. This paper reports for the first time that this approach to folding works for a variety of thermoplastics using sheets that are significantly thicker (∼10 times) than those reported previously.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3