Constructing Three-Dimensional Honeycomb Structures Based on Origami Geometry

Author:

Saito Kazuya1,Fujimoto Akinobu2,Okabe Yoji3

Affiliation:

1. Kyushu University Faculty of Design, , 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540 , Japan

2. Mitsubishi Motors Corporation , 3-1-21 Shibaura, Tokyo 108-8410 , Japan

3. The University of Tokyo Institute of Industrial Science, , 4-6-1 Komaba, Tokyo 153-8505 , Japan

Abstract

Abstract Origami has shown the potential to design unique mechanical properties and complex three-dimensional shapes by folding through designed crease patterns on flat materials. The authors investigated a new honeycomb-based origami metamaterial called “kirigami honeycomb.” Resembling origami, kirigami honeycomb allows a single flat sheet of material with periodic slits to be folded into a honeycomb shape. Previous studies have reported successful use of this method to create various honeycomb shapes, changing only the folding line diagrams (FLDs). These previous studies have, however, considered only one-directional cross-sectional modifications; the core thickness and curvature changed only in the W-direction. This study proposes a new method that will support complex 3D honeycomb designs made from single flat sheets. A newly defined crease pattern conversion method provides arbitrary scaling of the honeycomb shape in the L-direction. The combined FLD and pattern conversion design methods encourage the cost-effective manufacture of 3D shaped honeycombs from single flat paper sheets. The proposed method is implemented to the design software, enabling to design arbitrary cross-sectional honeycomb cores with optional L-directional scaling.

Funder

Japan Science and Technology Agency

Publisher

ASME International

Subject

Mechanical Engineering

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3