Towards a Better Understanding of the Rail Grinding Mechanism

Author:

Zhi Shaodan1,Zarembski Allan M.2,Li Jianyong1

Affiliation:

1. Beijing Jiaotong University, Beijing, China

2. University of Delaware, Newark, DE

Abstract

Rail grinding continues to be one of the most effective techniques for extending rail life, improving wheel/rail contact behavior, and reducing the overall cost of track maintenance. While the ability to more effectively implement improved rail grinding programs continues to expand, the understanding of the grinding mechanism itself has not kept pace with the improved implementation. Thus, while railroad engineering and maintenance personnel have learned to better develop grinding patterns and profiles through empirical testing and field evaluation, the fundamental theoretical bases for the improved grinding performance have not kept pace. One such fundamental area of understanding is the modeling of the rail grinding process itself, both individually, as a function of a single grinding motor on the head of the rail, and in the more complex configuration of multiple grinding motors in a range of patterns. This paper presents the results of research directly aimed at better understanding these mechanisms and then utilizing this better understanding to develop a detailed rail grinding model that allows for the accurate analysis of not only an individual grinding motor but also a full grinding train application, as a function of pattern and speed. In the case of the single grinding motor on the head of the rail, this research looks at the fundamental mechanism associated with each cutting abrasive grinding grain in the grinding stone, and then expands that mechanism to a full 10 inch diameter grinding wheel as it cuts into the rail head at a defined angle and speed. Using actual rail profile data and grinding data, a theoretical grinding wheel model is developed and then calibrated with wheel test data and actual grinding (field) data. This single motor model is then expanded into a full grinding train model, such as for a 96 stone grinding train with 48 motors per rail, where it is able to analyze the full sequence of 48 motors as each motor individually and sequentially removes metal from the rail head. The resulting analysis is sensitive to such key factors as grinding speed, and the key pattern parameters of motor angles, sequence and power. The model is then calibrated to and compared with actual full scale rail grinding metal removal data from a major Class 1 railroad. Such an analysis tool allows railroads to analyze the performance of different grinding patterns in a real world operating setting, to improve their rail grinding practices and take further advantage of new technologies in rail grinding to better manage the grinding process and improve planning of grinding activities.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Running-in evaluation after a rail grinding process using a pin-on-disk tribometer;Wear;2023-06

2. Improvement of the hydraulic system in a rail grinder based on the grinding effect;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2023-02-22

3. Surface and profile treatment of China’s U71Mn heavy rail using abrasive waterjet;The International Journal of Advanced Manufacturing Technology;2022-12-20

4. Design of a CBN composite abrasive to improve the performance of HSG rail maintenance grinding wheel;Construction and Building Materials;2022-02

5. Microscopic contact pressure and material removal modeling in rail grinding using abrasive belt;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2020-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3