Microscopic contact pressure and material removal modeling in rail grinding using abrasive belt

Author:

Fan Wengang12ORCID,Wang Wenxi3ORCID,Wang Junda1,Zhang Xinle1,Qian Chang1,Ma Tengfei1

Affiliation:

1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, P.R. China

2. Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, Ministry of Education, Beijing Jiaotong University, Beijing, P.R. China

3. College of Mechanical Engineering, Chongqing University, Chongqing, P.R. China

Abstract

Recently, the emerging rail grinding method using abrasive belt has been proposed to efficiently achieve the required geometric profile and the surface quality of the railhead. Although the abrasive features indeed have a great influence on this rail grinding process, the surface topography of abrasive belt regarding grits at the microscopic scale is neglected. In this article, a microscopic contact pressure model was developed to reveal the contact behavior of every active grit based on the digital representation of the surface topography of abrasive belt. Then a numerical model of material removal quantity was also established based on the consideration of the characteristics of abrasive grits and their interactions. Finally, the series of finite element simulations and grinding tests were successively implemented. The normal load and the surface topography of abrasive belt significantly affected the microscopic contact behavior of grits, thus confirming the proposed theoretical models of microscopic contact pressure and material removal quantity.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3