Flexible Profile Compact Thermal Models for Practical Geometries

Author:

Sabry Mohamed-Nabil1

Affiliation:

1. Université Française d’Egypte, 10 Hadaeq Ramo, Tariq El Nasr, Medinet Nasr, Cairo 11371, Egypt

Abstract

Recent advances in compact thermal models have led to the emergence of a new concept allowing models to be created at any desired order of accuracy. Traditionally, increasing precision was attained by increasing the number of nodes. This strategy faces many problems; in particular, for the case of multiple heat sources (MCM) and∕or stacked dies, because different operating conditions will lead to different temperature and heat flux profiles that will require different node partitioning in order to be matched. In fact, classical approaches face a difficulty in selecting appropriate node size and position, as well as the inability to provide an a priori estimate of the number of nodes needed. The new concept is based on the use of a flexible profile to account for different possible uses of the model. In particular, it can deal with different patterns of heat generation encountered in MCM and stacked dies, and hence it is truly boundary conditions independent. Moreover, the new approach gives access to the tangential temperature gradient. This valuable information for designers in order to assess reliability cannot be predicted by classical compact model approaches. The concept was presented earlier for a simple rectangular 2D structure with surface heating (2004, 10th THERMINIC Conference, pp. 273–280). In this paper, the concept will be generalized to 3D parallelepiped boxes with both surface and∕or volumetric heating. The second achievement is the possibility to deal with geometries that can be decomposed into boxes.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference24 articles.

1. Dynamic Compact Thermal Models Used for Electronic Design: A Review of Recent Progress;Sabry

2. Higher Order Compact Thermal Models;Sabry

3. Recent Progress in Compact Thermal Models;Lasance

4. A Rational Formulation of Thermal Circuit Models by Finite Element Method and Model Reduction Techniques for Electro-thermal Simulation;Hsu

5. Asymptotic Thermal Analysis of Electronic Packages and Printed-Circuit Boards;Liu;IEEE Trans. Compon., Packag. Manuf. Technol., Part A

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3