From Piping Deformation to Pressure Pulsation Measurements to Solve LDPE Plants Vibration Issues

Author:

Carcasci Cosimo1,Sacco Marco1,Landucci Marco2,Fiaschi Marco2

Affiliation:

1. CST - Compression Service Technology, Firenze, Italy

2. Sint Technology, Firenze, Italy

Abstract

Damages and failures in industrial plants are often related to vibration issues. Reciprocating compressors are typically affected by vibration phenomena due to the very nature of reciprocating motion as alternating forces and pressure pulsations are direct and inevitable consequences of reciprocation. Many preventive technical measures are undertaken in the detailed engineering design to avoid high levels of vibration, e.g. properly designed foundations, mass balancing, volume bottles, restriction orifices and piping supports. Nevertheless, vibration problems may still arise after a machine is installed in a plant and is started up, and often the vibration is not the result of a poor detailed design of the compressor itself but may depends on the piping and supports layout in the plant. Considering the extremely high pressures involved in the LDPE process (discharge pressure is generally between 160 and 350 Mpa), especially in tubular reactor plants, safety is a key consideration, and avoiding vibrations and consequential piping ruptures is essential for optimal and safe plant operation. In a tubular reactor polyethylene plant, high piping vibrations were present on the Hypercompressor piping from the first machine start-up. Despite immediate analysis and small modifications to a few pipe supports, some areas continued to be subject to this phenomenon, potentially leading to ruptures, welding failures and hazardous gas leakages. Therefore, the end user decided to involve an independent third party consultant. During the site survey, the piping system was fully analysed to investigate the nature and the causes of the high vibrations, and it was decided that both vibration and pulsation measurements had to be performed, to obtain a complete and realistic picture of the phenomenon. While vibration measurement could be performed as a standard procedure on this kind of machine, pulsation measurement was a challenging operation since dynamic pressure transducers could not be used at such high pressures (above 100 MPa). Thus, an experimental technique was used. The pulsation measurements were performed using strain gage sensors that dynamically detected the circumferential deformation of the pipes. Information about the internal pressure was derived from the pipe deformation through the well-known theory of cylinders under internal pressure and in this way the pulsation measurements could be compared to the acoustical analysis performed during the detailed engineering phase. The analysis highlighted acoustic resonances that were not present in the project analysis, mainly due to an incorrect evaluation of the thermodynamic properties of ethylene gas, which changes significantly when the gas is subject to the high pressures at which the Hypercompressor works. Moreover, the vibration measurements were compared to the pulsations at some key points and to the mechanical natural frequency of the relevant piping segment, identifying also areas subject to mechanical resonance. After understanding the root cause of these vibrations, effective and low-impact countermeasures were recommended and implemented in a few key points, leading to a drastic reduction of the vibrations, below the limit values recommended by the standards.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyses of gas pulsation characteristics in the discharge pipeline of a hyper compressor;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-05-29

2. Performance analysis of a hyper-compressor for vinyl acetate and ethylene mixture using real-fluid properties;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-11-07

3. Analysis of the Thermodynamic Characteristics of a Hyper-Compressor through Numerical Simulation and Experimental Investigation;Applied Sciences;2023-03-31

4. Analysis and treatment of gas pulsation in the pipeline of a hyper compressor;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3