Analysis of the Thermodynamic Characteristics of a Hyper-Compressor through Numerical Simulation and Experimental Investigation

Author:

Yang Lanlan1ORCID,Jia Xiaohan1ORCID,Peng Xueyuan1ORCID

Affiliation:

1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Hyper-compressors play an important role in polymer production. However, due to the extremely high pressure and complex geometries, it is difficult to monitor and calculate the thermodynamic characteristics and pressure pulsation. In this research, a three-dimensional (3D) computational fluid dynamics (CFD) model of a hyper-compressor with a central valve and piston movements based on a real gas model (RGM) was developed to analyze the thermodynamic performance and pressure pulsation. Then, the p−θ diagram of the working chamber and the dynamic pressure internal pipe were constructed using a nondestructive testing approach and showed a strong correlation with the pressure sensor data. The 3D-CFD model’s results correlated well with the experimental data. The deviation error between simulation values and experimental data of the indicated power was 1.77%. Lastly, the numerical model was used to analyze the hyper-compressor’s performance, power loss, dynamic features of the central valve and pressure pulsation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the transient dynamic characteristics of the low-density polyethylene compressors shaft system with operating pressure exceeding 180 MPa;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-08-26

2. Analyses of gas pulsation characteristics in the discharge pipeline of a hyper compressor;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-05-29

3. Investigation of the Concentric Heat Pump with Improved Energy Performance;TEM Journal;2023-11-27

4. Performance analysis of a hyper-compressor for vinyl acetate and ethylene mixture using real-fluid properties;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3