Interlaminar Toughening of GFRP—Part II: Characterization and Numerical Simulation of Curing Kinetics

Author:

Bian Dakai1,Beeksma Bradley R.2,Shim D. J.3,Jones Marshall3,Lawrence Yao Y.2

Affiliation:

1. Department of Mechanical Engineering, Columbia University, New York, NY 10027 e-mail:

2. Department of Mechanical Engineering, Columbia University, New York, NY 10027

3. GE Global Research, Niskayuna, NY 12309

Abstract

Various methods of toughening the bonding between the interleaf and laminate glass fiber reinforced polymer (GFRP) have been developed due to the increasing applications in industries. A polystyrene (PS) additive modified epoxy is used to improve the diffusion and precipitation region between polysulfone (PSU) interleaf and epoxy due to its influence on the curing kinetics without changing glass transition temperature and viscosity of the curing epoxy. The temperature-dependent diffusivities of epoxy, amine hardener, and PSU are determined by using attenuated total reflection–Fourier transfer infrared spectroscopy (ATR–FTIR) through monitoring the changing absorbance of their characteristic peaks. Effects of PS additive on diffusivity in the epoxy system are investigated by comparing the diffusivity between nonmodified and PS modified epoxy. The consumption rate of the epoxide group in the curing epoxy reveals the curing reaction rate, and the influence of PS additive on the curing kinetics is also studied by determining the degree of curing with time. A diffusivity model coupled with curing kinetics is applied to simulate the diffusion and precipitation process between PSU and curing epoxy. The effect of geometry factor is considered to simulate the diffusion and precipitation process with and without the existence of fibers. The simulation results show the diffusion and precipitation depths which match those observed in the experiments.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3