Nanomaterials Modified Drilling Fluid for Improving Deep Drilling Conditions

Author:

Abdo Jamil1,Haneef Muhammad Danish2

Affiliation:

1. Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532

2. School of Mechanical and Manufacturing Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia

Abstract

Abstract Achieving stability of drilling fluids (DFs) rheology with high temperature and high pressure (HTHP) has always seen a growing focus with increasing pursuits of deep drilling operations to maximize hydrocarbon recovery. Since there is no boundary of how deep the drilling technology can be pushed to access deep-lying reservoirs, the quest to improve and stabilize the drilling fluids rheology is an open-ended and ongoing matter. This paper presents an investigation of two distinct clays namely sepiolite (SP) and attapulgite (AT) in nanoform as water-based drilling fluid (WBDF) additives for improved and stable rheological properties. The process of material sourcing, characterization, development in nanoform, and testing as a drilling fluid additive at low and high temperature and pressure conditions are the main focus of this study. Through experiments, it was determined that 30–60 nm size range and 4 wt% concentration of developed nanomaterials yielded the optimal performance. Various tests were then performed at HTHP, and the stability of nanosepiolite (NSP) and nanoattapulgite (NAT) in 4 wt% concentration was compared with regular drilling fluid additive (bdf403) which is used as a common rheology stabilizer in the industry. It was found that for NSP and NAT-modified drilling fluids, the yield point, plastic viscosity, and gel strength were found to be retained at temperatures and pressures of up to 180 °C and 15 ksi, respectively, in contrast to bdf403 WBDF which deteriorated at much lower temperature and pressure. NSP additives were found to be more effective than NAT additives. The results confirmed a strong dependence of the DF stability on the morphological characteristics of the tested clays, implying that the properties of the DFs can be tailored by modifying the clay morphologies, particularly in the nanoform.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3