Characteristics of Residual Stress Profiles in Hard Turned Versus Ground Surfaces With and Without a White Layer

Author:

Warren A. W.1,Guo Y. B.1

Affiliation:

1. Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487

Abstract

Hard turning and grinding are precision processes in many cases for manufacturing various mechanical products. Product performance is highly dependent on the process induced residual stress. However, the basic differences in residual stress profiles generated by hard turning and grinding with and without the presence of a thermal white layer have not been well understood. This study aims to compare basic characteristics of the residual stress profiles using an extensive residual stress measurement for five surface types: hard turned fresh, hard turned with a white layer, ground fresh, ground with a white layer, and as heat treated. The X-ray diffraction data revealed distinct differences in the residual stress profiles for the five surface types. Hard turning with a sharp cutting tool generates a unique “hook” shaped residual stress profile characterized by compressive residual stress at the surface and maximum compressive residual stress in the subsurface, while “gentle” grinding only generates maximum compressive residual stress at the surface. The depth of compressive residual stress in the subsurface by hard turning is much larger than that by grinding. The high hertz pressure induced by the cutting tool in turning is the determining factor for the differences in residual stress. High tensile residual stress associates with the existence of a turned or a ground white layer. The coupled effects of high hertz pressure and rapid temperature change induced by tool wear play an important role in the resultant tensile residual stress. In addition, residual stress by grinding is more scattered than that by turning. Compared with the deterministic influence of machining process on the magnitudes and profiles of residual stress, the effect of heat treatment is minor.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3