Production of Open Cell Aluminum Foams by Using the Dissolution and Sintering Process (DSP)

Author:

Barletta M.1,Gisario A.2,Guarino S.1,Rubino G.1

Affiliation:

1. Department of Mechanical Engineering, University of Rome Tor Vergata, Via del Politecnico, 1-00133 Rome, Italy

2. Department of Mechanic and Aeronautic, La Sapienza University of Rome, Via Eudossiana, 18-00184 Rome, Italy

Abstract

The manufacture of open cell metal foams by dissolution and sintering process (DSP) is the matter of the present work. Aluminum foams were produced by mixing together carbamide particles with different mesh sizes (i.e., space-holder) and very fine aluminum powders. Attention was first paid at understanding the leading phenomena of the different stages the manufacturing process gets through: Compaction of the main constituents, space-holder dissolution, and aluminum powders sintering. Then, experimental tests were performed to analyze the influence of several process parameters, namely, carbamide grain size, carbamide wt %, compaction pressure, and compaction speed on the overall mechanical performance of the aluminum foams. Meaningfulness of each operational parameter was assessed by analysis of variance. Metal foams were found to be particularly sensitive to changes in compaction pressure, exhibiting their best performances for values not higher than 400 MPa. Neural network solutions were used to model the DSP. Radial basis function (RBF) neural network trained with back propagation algorithm was found to be the fittest model. Genetic algorithm (GA) was developed to improve the capability of the RBF network in modeling the available experimental data, leading to very low overall errors. Accordingly, RBF network with GA forms the basis for the development of an accurate and versatile prediction model of the DSP, hence becoming a useful support tool for the purposes of process automation and control.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3