Nature-Inspired Cellular Structure Design for Electric Vehicle Battery Compartment: Application to Crashworthiness

Author:

Mudassir MohammedORCID,Tarlochan FarisORCID,Mansour Mahmoud AshrafORCID

Abstract

This paper discusses the potential of using lightweight nature-inspired cellular structured designs as energy absorbers in crashworthiness applications for electric vehicles (EV). As EVs are becoming popular with their increased battery capacity, these lightweight cellular structures have regained research interest as they may increase mileage by reducing vehicle mass in addition to protecting the battery during collisions. In this paper, a novel lightweight cellular structure for EV battery protection and crashworthiness is designed and simulated. In designing the cellular structure, four different ways of applying the shell thickness have been considered that affects the collapse behavior and the crashworthiness. A numerical study was conducted on 45 samples with varying length, shell thicknesses, and thickness application methods. Four types of shell thickness application methods were investigated: Uniform thickness, strut-wall thickness, gradient thickness, and alternate thickness. Force-displacement curves, energy absorption, specific energy absorption, and collapse behaviors are some of the metrics used for evaluating the crashworthiness of the structures. Shell thickness is found to affect both the collapse behavior and energy absorption capabilities. Energy absorption results are similar to other studies on designed cellular structures. The highest performing cellular structure is reported to have a specific energy absorption of 35kJ/kg, which is comparable to cellular structures reported in the literature.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. Electric Vehicles: Prospects and Challenges;Muneer,2017

2. The increase of electric vehicle usage in Norway—incentives and adverse effects

3. Norway’s electric cars zip to new record: Almost a third of all sales;Knudsen;Reuters,2019

4. Effects of battery manufacturing on electric vehicle life-cycle greenhouse gas emissions;Hall;Int. Counc. Clean Transp.,2018

5. Longest range electric cars 2019: EVs to buy with the longest charge;Charlton;Car Mag.,2019

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3