Effect of Unsteady Stator Wake—Rotor Double-Leakage Tip Clearance Flow Interaction on Time-Average Compressor Performance

Author:

Sirakov Borislav Todorov1,Tan Choon-Sooi1

Affiliation:

1. MIT Gas Turbine Laboratory, Cambridge, MA 02139

Abstract

A study has been conducted, using unsteady three-dimensional Reynolds-averaged Navier-Stokes simulations to determine the impact on rotor performance of the interaction between upstream (steady defect and time-varying defect) stator wakes and rotor tip clearance flow. The key effects of the interaction between steady stator wakes and rotor tip clearance flow are: 1) a decrease in loss and blockage associated with tip clearance flow; 2) an increase in passage static pressure rise. Performance benefit is seen in the operability range from near design to high loading. The benefit is modest near design and increases with loading. Significant beneficial changes due to the stator-rotor interaction occur when the phenomenon of tip clearance flow double-leakage is present. Double-leakage occurs when the tip clearance flow passes through the tip gap of the adjacent blade. It is detrimental for compressor performance. The effect of strong stator-rotor interaction is to suppress double-leakage on a time-average basis. Double-leakage typically takes place at high loading but can be present at design condition as well, for modern highly loaded compressor. A benefit due to unsteady interaction is also observed in the operability range of the rotor. A new generic causal mechanism is proposed to explain the observed changes in performance. It identifies the interaction between the tip clearance flow and the pressure pulses, induced on the rotor blade pressure surface by the upstream wakes, as the cause for the observed effects. The direct effect of the interaction is a decrease in the time-average double-leakage flow through the tip clearance gap so that the stream-wise defect of the exiting tip flow is lower with respect to the main flow. A lower defect leads to a decrease in loss and blockage generation and hence an enhanced performance compared to that in the steady situation. The performance benefits increase monotonically with loading and scale linearly with upstream wake velocity defect. With oscillating defect stator wakes, rotor performance shows dependence on oscillation frequency. Changes in the tip region occur at a particular reduced frequency leading to (1) decrease in blockage, and (2) increase in passage loss. The changes in rotor performance at a particular reduced frequency are hypothesized to be associated with the inherent unsteadiness of the tip clearance vortex and its resonance behavior excited by the oscillating wakes.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3