Affiliation:
1. MIT Gas Turbine Laboratory, Cambridge, MA 02139
Abstract
A study has been conducted, using unsteady three-dimensional Reynolds-averaged Navier-Stokes simulations to determine the impact on rotor performance of the interaction between upstream (steady defect and time-varying defect) stator wakes and rotor tip clearance flow. The key effects of the interaction between steady stator wakes and rotor tip clearance flow are: 1) a decrease in loss and blockage associated with tip clearance flow; 2) an increase in passage static pressure rise. Performance benefit is seen in the operability range from near design to high loading. The benefit is modest near design and increases with loading. Significant beneficial changes due to the stator-rotor interaction occur when the phenomenon of tip clearance flow double-leakage is present. Double-leakage occurs when the tip clearance flow passes through the tip gap of the adjacent blade. It is detrimental for compressor performance. The effect of strong stator-rotor interaction is to suppress double-leakage on a time-average basis. Double-leakage typically takes place at high loading but can be present at design condition as well, for modern highly loaded compressor. A benefit due to unsteady interaction is also observed in the operability range of the rotor. A new generic causal mechanism is proposed to explain the observed changes in performance. It identifies the interaction between the tip clearance flow and the pressure pulses, induced on the rotor blade pressure surface by the upstream wakes, as the cause for the observed effects. The direct effect of the interaction is a decrease in the time-average double-leakage flow through the tip clearance gap so that the stream-wise defect of the exiting tip flow is lower with respect to the main flow. A lower defect leads to a decrease in loss and blockage generation and hence an enhanced performance compared to that in the steady situation. The performance benefits increase monotonically with loading and scale linearly with upstream wake velocity defect. With oscillating defect stator wakes, rotor performance shows dependence on oscillation frequency. Changes in the tip region occur at a particular reduced frequency leading to (1) decrease in blockage, and (2) increase in passage loss. The changes in rotor performance at a particular reduced frequency are hypothesized to be associated with the inherent unsteadiness of the tip clearance vortex and its resonance behavior excited by the oscillating wakes.
Reference27 articles.
1. Wisler, D. C.
, 1985, “Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing,” ASME J. Eng. Gas Turbines Power, 107, pp. 354–363.
2. Smith, L. H., Jr., 1958, “The Effect of Tip Clearance on Peak Pressure Rise of Axial-Flow Fans and Compressors,” ASME Symposium on Stall, pp. 149–152.
3. Koch, C. C., and Smith, L. H., 1976, “Loss Sources and Magnitudes in Axial-Flow Compressors,” ASME J. Eng. Power, 98, pp. 411–424 (July).
4. Rains, D. A., 1954, “Tip Clearance Flows in Axial Flow Compressors and Pumps,” California Institute of Technology, Hydrodynamics and Mechanical Engineering Laboratories, Report No. 5.
5. Hunter, I. H., and Cumpsty, N. A., 1982, “Casing Wall Boundary-Layer Development Through an Isolated Compressor Rotor,” ASME J. Turbomach., 104, pp. 805–817.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献