The Theoretical Flow Ripple of an External Gear Pump

Author:

Manring Noah D.1,Kasaragadda Suresh B.1

Affiliation:

1. Mechanical and Aerospace Engineering Department, University of Missouri–Columbia, Columbia, MO 65211

Abstract

In this paper, the theoretical flow ripple of an external gear pump is studied for pumps of similar size using different numbers of teeth on the driving and driven gears. In this work, the flow ripple equation is derived based upon the flow of incompressible fluid across the changing boundaries of a control volume. From this method, it is shown that the instantaneous length of action within the gear mesh determines the instantaneous flow ripple. A numerical and a closed-form approximation are presented for the instantaneous length of action and it is shown that the difference between these two solutions is negligible. Fast Fourier transform analysis is employed for identifying the harmonic frequencies and amplitudes of the flow pulse and these results are compared for 16 different pump designs. In summary, the results of this study show that the driving gear dictates the flow ripple characteristics of the pump while the driven gear dictates the pump size. As a result, it may be advantageous to design an external gear pump with a large number of teeth on the driving gear and a fewer number of teeth on the driven gear. This design configuration will tend to reduce both the physical pump size (without reducing the volumetric displacement of the pump) and the amplitude of the flow pulsation, while increasing the natural harmonic frequencies of the machine.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3