Cavitation and Pulsation Reduction for External Gear Pumps Using Novel Core-Feed Inlets and Outlets: An Integrated Experimental and Numerical Study

Author:

Sedri Farhad1,Riasi Alireza1,Mahdavi Nejad Alireza2,Metghalchi Hameed22

Affiliation:

1. University of Tehran Marine and Hydrokinetic Energy Laboratory, School of Mechanical Engineering, College of Engineering, , Tehran 11155-4563 , Iran

2. Northeastern University Department of Mechanical and Industrial Engineering, , Boston, MA 02115

Abstract

Abstract Fluid starvation and congestion at the meshing area of external gear pumps (EGPs) happen inevitably as an intrinsic nature of these pumps. As a result, cavitation and excessive pressure pulsation are the two significant issues suffering the pump performance at almost any pump speed. Increasing speed or differential pressure exacerbates the situation, resulting in excessive noise, vibration, and damage to the pump or the hydraulic circuit, plus a significant reduction of pump efficiency. External gear pumps have tiny decompression grooves on the bearing blocks to alleviate these issues. However, these grooves cannot handle sufficient flow to prevent pressure drop at the intake side and pressure rise at the discharge side of the meshing area. This study presents analysis of an innovative core-feed inlets/outlets which effectively reduce cavitation and excessive pressure pulsation, even at extremely high speeds, by connecting the closed volumes of fluid at the gears meshing area to the main inlet/outlet through the center of gears. A computational fluid dynamics (CFD) analysis was performed to study the dynamic behavior of the pump. A fully functional prototype with secondary inlets and transparent components was built to validate the flow rate calculation against the experimental data and visualize the cavitation phenomena. The numerical results were in an excellent agreement with experimental data. The results show that the new pump can operate at much higher speeds with higher efficiency than a typical gear pump.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3