Experimental Investigation of Stepped Tip Gap Effects on the Performance of a Transonic Axial-Flow Compressor Rotor

Author:

Thompson D. W.1,King P. I.1,Rabe D. C.2

Affiliation:

1. Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433

2. Wright Laboratories, Wright-Patterson AFB, OH 45433

Abstract

The effects of stepped-tip gaps and clearance levels on the performance of a transonic axial-flow compressor rotor were experimentally determined. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine causing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100 percent design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0 percent increase in mass flow and a 1.5 percent improvement in efficiency. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3