A Data-Knowledge Hybrid Driven Method for Gas Turbine Gas Path Diagnosis

Author:

Chen Jinwei,Hu Zhenchao,Lu JinzhiORCID,Zheng XiaochenORCID,Zhang HuishengORCID,Kiritsis DimitrisORCID

Abstract

Gas path fault diagnosis of a gas turbine is a complex task involving field data analysis and knowledge-based reasoning. In this paper, a data-knowledge hybrid driven method for gas path fault diagnosis is proposed by integrating a physical model-based gas path analysis (GPA) method with a fault diagnosis ontology model. Firstly, a physical model-based GPA method is used to extract the fault features from the field data. Secondly, a virtual distance mapping algorithm is developed to map the GPA result to a specific fault feature criteria individual described in the ontology model. Finally, a fault diagnosis ontology model is built to support the automatic reasoning of the maintenance strategy from the mapped fault feature criteria individual. To enhance the ability of selecting a proper maintenance strategy, the ontology model represents more abundant knowledge from several sources, such as fault criteria analysis, physical structure analysis, FMECA (failure mode, effects, and criticality analysis), and the maintenance logic decision tool. The availability of the proposed hybrid driven method is verified by the field fault data from a real GE LM2500 PLUS gas turbine unit. The results indicate that the hybrid driven method is effective in detecting the path fault in advance. Furthermore, diversified fault information, such as fault effects, fault criticality, fault consequence, and fault detectability, could be provided to support selecting a proper maintenance strategy. It is proven that the data-knowledge hybrid driven method can improve the capability of the gas path fault detection, fault analysis, and maintenance strategy selection.

Funder

National Natural Science Foundation of China

National Fundamental Research Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3