Stochastic Control for Self-Assembly of XBots

Author:

Ayanian Nora1,White Paul J.1,Ha´la´sz A´da´m1,Yim Mark1,Kumar Vijay1

Affiliation:

1. University of Pennsylvania, Philadelphia, PA

Abstract

We propose a stochastic, decentralized algorithm for the self-assembly of a group of modular robots into a geometric shape. The method is inspired by chemical kinetics simulations, particularly, the Gillespie algorithm [1, 2] that is widely used in biochemistry, and is specifically designed for modules with dynamic constraints, such as the XBot [3]. The most important feature of our algorithm is that all modules are identical and all decision making is local. Individual modules decide how to move based only on information available to them and their neighbors and the geometric, kinematic and dynamic constraints. Each module knows the details of the goal configuration, keeps track of its own location, and communicates position information locally with adjacent modules only when modules in their vicinity have reconfigured. We show that this stochastic method leads to trajectories with convergence comparable to those obtained from a brute-force exploration of the state space. However, the computational power (speed and memory) requirements are independent of the number of modules, while the brute-force approach scales quadratically with the number of modules. We present the schematic of the modules, preliminary experimental results to illustrate the basic moves, and simulation results to demonstrate the efficacy of the algorithm.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3