Effect of Material Strength on Ductile Failure of Steel in Pressure Vessel Design

Author:

Baghous N.1,Barsoum I.1

Affiliation:

1. Department of Mechanical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates

Abstract

Abstract Pressure vessels and their components are commonly designed with the ASME Boiler and Pressure Vessel Codes. One of the requirements when pursuing the design by analysis route is to design these equipment against ductile local failure criterion provided in the codes. However, the ductile local failure criterion in the ASME codes only accounts for the stress triaxiality (T) as a stress state measure. Recent work has shown that ductile failure highly depends on the stress state characterized by both T and the Lode parameter L, which is related to the third deviatoric stress invariant. In this study, the effect of stress state characterized by both T and L is investigated for six different steel grades with different material strength levels. To establish the ductile failure loci for the six steel grades with respect to T and L, experiments were conducted on two different specimen geometries. The L parameter is controlled by the specimen configuration, where the round notched bar specimen corresponds to axisymmetric tensile conditions (L = −1) and the flat notched specimen corresponds to plane strain loading conditions (L = 0), whereas T is controlled by introducing a notch at the center of the specimens. A Lode sensitivity parameter (LS) is defined based on the experimental results and revealed that the steel grades with ultimate strength higher than a certain threshold value (450 MPa) exhibit sensitivity to the Lode parameter. The Lode sensitivity was quantified, and the results showed that the LS increases with increase in the ultimate strength of the steel grade. The results were incorporated to enhance the original ASME local failure criterion by accounting for T, L, and LS to accurately assess ductile failure in high-strength steels. The application of the enhanced failure locus in a design analysis of a pressure vessel made of a high-strength steel grade is demonstrated, which showed that the original ASME criterion, as compared to the enhanced criterion in this study, is not capable of predicting ductile failure and hence rendering a rather nonconservative design. It is concluded that the enhanced local failure criterion is recommended to be used for the design of pressure vessels and their components made of steel grades with an ultimate strength higher than the threshold value.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3