The Role of Laminar-Turbulent Transition in Gas Turbine Engines: A Discussion

Author:

Walker G. J.1

Affiliation:

1. University of Tasmania, Hobart, Australia

Abstract

An extended discussion of Mayle’s (1991) critical study of transition phenomena in gas turbine engines is presented. Attention is focused on transition in decelerating flow regions, which are the major sources of loss production for axial turbomachine blades. The following points are examined in detail: (a) the physics of transition and its implications for the correlation of various transition phenomena; (b) the relative importance of pressure gradient and free-stream turbulence in controlling transition; (c) the influence of pressure gradient on periodic-unsteady transition; (d) the correlation of transition length under conditions of arbitrary pressure gradient and free-stream turbulence level; and (e) transition behavior in laminar separation bubbles. The discussion examines various differences in philosophy concerning the above phenomena and makes further suggestions for transition research, which may assist in resolving the issues raised.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Analysis of the Time-Wise Compressor Fouling Phenomenon;Journal of Turbomachinery;2024-04-23

2. The Interaction of Turbulent Spots With Low-Speed Streaks;Journal of Fluids Engineering;2024-03-22

3. Investigation of transition flow on suction surface of highly loaded compressor cascade controlled by plasma actuator;International Journal of Heat and Fluid Flow;2024-02

4. Study of the influence of multiple factors on the boundary layer of a high-lift LPT with the RBF-GA method;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2023-11-24

5. Bi-global stability analysis on flow separation of two-dimensional compressor cascade;Aerospace Science and Technology;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3