Study of the influence of multiple factors on the boundary layer of a high-lift LPT with the RBF-GA method

Author:

Sun Shuang1,Huang Zhen1,Kang Jinhui1,Sun Xiaopeng1,Kuang Boyu2ORCID,Lu Lehan1

Affiliation:

1. Department of Aviation Engineering, Civil Aviation University of China, Tianjin, China

2. Centre for Computational Engineering Sciences (CES), Cranfield University, Cranfield, UK

Abstract

In a high-altitude cruising state, boundary layer separation exists in high-lift low-pressure turbines, and inflow conditions corresponding to different blade designs can directly affect the working efficiency of low-pressure turbines. In particular, the reduced frequency of wake and free-stream turbulence intensity in an inlet flow can greatly influence boundary layer separation and transition development. In this paper, the influence of different inflow turbulence intensities and reduced wake frequencies on the development of suction surface boundary layers in high-lift low-pressure turbines under the influence of upstream wakes is studied by numerical simulations and experiments. Due to the combination of inflow free-stream turbulence intensity and reduced wake frequency, many inflow conditions can be chosen in the design process, and the unsteady influence of upstream wakes complicates the boundary layer flow. In this paper, an RBF (radial basis function)-GA (genetic algorithm) machine learning method is used to explore the optimal inlet conditions corresponding to the minimum profile loss of the Pak-B profile. The search region of the free-stream turbulence intensity is 2%–4%, and the reduced frequency of the wake is changed by changing the flow coefficient, whose variation range is 0.7–1.3. It is found that the RBF-GA machine learning method can attain an inflow condition with a lower profile loss while using the same amount of computation and effort.

Funder

Scientific Research Program of Tianjin Education Commission

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A study of angle parametric optimization of the composite honeycomb on turbine blade tip;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3