Affiliation:
1. Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
Abstract
Most of the nonlinear system identification techniques described in the existing literature required force and response information at all excitation degrees-of-freedom (DOFs). For cases, where the excitation comes from base motion, those methods cannot be applied as it is not feasible to obtain the measurements of motion at all DOFs from an experiment. The objective of this research is to develop the methodology for the nonlinear system identification of continuous, multimode, and lightly damped systems, where the excitation comes from the moving base. For this purpose, the closed-form expression for the equivalent force also known as the pseudo force from the measured data for the base-excited structure is developed. A hybrid model space is developed to find out the nonlinear restoring force at the nonlinear DOFs. Once the nonlinear restoring force is obtained, the nonlinear parameters are extracted using “multilinear least square regression” in a modal space. A modal space is chosen to express the direct and cross-coupling nonlinearities. Using a cantilever beam as an example, the proposed methodology is demonstrated, where the experimental setup, testing procedure, data acquisition, and data processing are presented. The example shows that the method proposed here is systematic and constructive for nonlinear parameter identification for base-excited structure.
Subject
Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献