Frequency-Domain Identification of Linear Time-Periodic Systems Using LTI Techniques

Author:

Allen Matthew S.1

Affiliation:

1. Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706

Abstract

A variety of systems can be faithfully modeled as linear with coefficients that vary periodically with time or linear time-periodic (LTP). Examples include anisotropic rotor-bearing systems, wind turbines, and nonlinear systems linearized about a periodic trajectory. Many of these have been treated analytically in the literature, yet few methods exist for experimentally characterizing LTP systems. This paper presents a set of tools that can be used to identify a parametric model of a LTP system, using a frequency-domain approach and employing existing algorithms to perform parameter identification. One of the approaches is based on lifting the response to obtain an equivalent linear time-invariant (LTI) form and the other based is on Fourier series expansion. The development focuses on the preprocessing steps needed to apply LTI identification to the measurements, the postprocessing needed to reconstruct the LTP model from the identification results, and the interpretation of the measurements. This elucidates the similarities between LTP and LTI identification, allowing the experimentalist to transfer insight between the two. The approach determines the model order of the system and the postprocessing reveals the shapes of the time-periodic functions comprising the LTP model. Further postprocessing is also presented, which allows one to generate the state transition and time-varying state matrices of the system from the output of the LTI identification routine, so long as the measurement set is adequate. The experimental techniques are demonstrated on simulated measurements from a Jeffcott rotor mounted on an anisotropic flexible shaft supported by anisotropic bearings.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference24 articles.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3