Numerical Investigation on Bubble Growth and Merger in Microchannel Flow Boiling With Self-Rewetting Fluid

Author:

Li Wei1,Lin Yuhao1,Luo Yang1

Affiliation:

1. Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Abstract There exist some problems such as flow instability and critical heat flux (CHF) caused by the local dryout phenomenon, which is an obstacle to the application of microchannel flow boiling heat sink. Utilizing self-rewetting fluid is one of the promising ways to minimize the dryout area, thus increasing the heat transfer coefficient and CHF. To investigate the heat transfer performance of self-rewetting fluid in microchannel flow boiling, a numerical investigation is carried out in this study using the volume of fluid (VOF) method, phase-change model, and continuum surface force model with surface tension versus temperature. A three-dimensional numerical investigation of bubble growth and merger is carried out with water and 0.2 wt % heptanol solution. The single bubble growing cases, two x-direction/y-direction bubbles' merging cases, and three bubbles' merging cases are conducted. Since the bubbles never detach the heated walls, the dryout area and regions nearby the contact line with thin liquid film dominated the heat transfer process during the bubbles' growth and merger. The self-rewetting fluid can minimize the local dryout area and achieve larger thin liquid film area around the contact line due to the Marangoni effect and thermocapillary force, thus resulting in higher wall heat flux. The two x-direction bubbles' merging case performed best for heat transfer in the microchannel, in which self-rewetting fluid achieves heat transfer enhancement for over 50%.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3