Numerical simulation of boiling behavior in vertical microchannels

Author:

Zhang Zheng,Zhang GuanminORCID,Wei Min,Zhang YiORCID,Tian Maocheng

Abstract

High heat flux electronic devices put forward new requirements for heat dissipation, and boiling heat transfer technology is widely used because of its higher heat dissipation capacity. In this study, the volume of fluid method was employed, along with the incorporation of the Lee phase-change mass transfer model, to investigate two-phase flow and heat transfer in vertical upward rectangular microchannels. The heat flux was varied within the range of 10–40 kW/m2, while the mass flux was varied within the range of 200–600 kg/m2 s. With the increase in heat flux, bubble flow, slug flow, churn flow, and annular flow were found successively. A phase diagram was established to predict the flow pattern transition during the boiling process. When the flow pattern changes to the churn and the annular flow, the active nucleation site density increases obviously with the Boiling number (Bo). A new correlation was proposed for two-phase flow boiling heat transfer, suitable for vertical upward channels in microscale fluids. The friction factor obtained using the Darcy friction factor equation agrees well with the simulation results at a high-pressure drop. The instability in microchannels increases with the increase in heat flux, particularly in annular flow, resulting in more severe wall temperature fluctuations.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3