Patient-Specific MRI-Based 3D FSI RV/LV/Patch Models for Pulmonary Valve Replacement Surgery and Patch Optimization

Author:

Tang Dalin1,Yang Chun2,Geva Tal3,del Nido Pedro J.4

Affiliation:

1. Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609

2. Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609; Mathematics Department, Beijing Normal University, Beijing, P.R.C.

3. Department of Cardiology, Children’s Hospital, Boston, MA 02115; Department of Pediatric, Harvard Medical School, Boston, MA 02115

4. Department of Cardiac Surgery, Children’s Hospital, Harvard Medical School, Boston, MA 02115

Abstract

A patient-specific right/left ventricle and patch (RV/LV/patch) combination model with fluid-structure interactions (FSIs) was introduced to evaluate and optimize human pulmonary valve replacement/insertion (PVR) surgical procedure and patch design. Cardiac magnetic resonance (CMR) imaging studies were performed to acquire ventricle geometry, flow velocity, and flow rate for healthy volunteers and patients needing RV remodeling and PVR before and after scheduled surgeries. CMR-based RV/LV/patch FSI models were constructed to perform mechanical analysis and assess RV cardiac functions. Both pre- and postoperation CMR data were used to adjust and validate the model so that predicted RV volumes reached good agreement with CMR measurements (error <3%). Two RV/LV/patch models were made based on preoperation data to evaluate and compare two PVR surgical procedures: (i) conventional patch with little or no scar tissue trimming, and (ii) small patch with aggressive scar trimming and RV volume reduction. Our modeling results indicated that (a) patient-specific CMR-based computational modeling can provide accurate assessment of RV cardiac functions, and (b) PVR with a smaller patch and more aggressive scar removal led to reduced stress/strain conditions in the patch area and may lead to improved recovery of RV functions. More patient studies are needed to validate our findings.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3