Sliding Pressure Inventory Control of a Supercritical CO2 Cycle for Concentrated Solar Power—Analysis and Implications

Author:

Seshadri Lakshminarayanan1,Kumar Pramod2

Affiliation:

1. Indian Institute of Science Department of Mechanical Engineering, , Bengaluru 560012 , India

2. Indian Institute of Science Interdisciplinary Centre for Energy Research (ICER), Associate Faculty–Department of Mechanical Engineering, , Bengaluru 560012 , Karnataka, India

Abstract

Abstract This paper presents the use of sliding pressure inventory control (SPIC) of a 10 MW supercritical carbon dioxide Brayton cycle for concentrated solar power, incorporating printed circuit heat exchangers. Load regulation using SPIC for three representative ambient conditions 45 °C, 30 °C, and 15 °C are considered. While a wide operating range from 10 MW to less than 1 MW part load is obtained, a notable cycle efficiency decline at part load is also seen. Irreversibility analysis reveals that deterioration in recuperator and turbomachinery performance are primarily responsible for cycle performance degradation at part load. Nevertheless, useful inferences are obtained from the 10 MW SPIC irreversibility study. With a slightly increased value of heat exchanger length, a non-condensing 1 MW subcritical CO2 cycle operating between 35 bar/53 bar is found to be as efficient as a 1 MW supercritical CO2 cycle operating between 88 bar/210 bar. The major benefit of choosing the subcritical CO2 cycle for 1 MW scale applications is the significantly reduced turbomachinery speed (∼26,000 rpm) in comparison with supercritical CO2 turbomachinery (∼67,000 rpm) for the same power scale. These advantages are found to be true for air-based ideal gas cycles operating between 35 bar/53 bar too, with the latter requiring nominally smaller heat exchangers than the subcritical CO2 cycle. The final choice of working fluid, however, for these low-pressure cycles would depend on practical considerations, such as material compatibilities at high temperatures, corrosion considerations, and cost.

Funder

Department of Science and Technology, Ministry of Science and Technology

Ministry of Human Resource Development

Science and Engineering Research Board

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3